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Abstract—Although there are tools to help developers un-
derstand the matching behaviors between a regular expression
and a string, regular-expression related faults are still common.
Learning developers’ behavior through the change history of
regular expressions can identify common edit patterns, which
can inform the creation of mutation and repair operators to
assist with testing and fixing regular expressions.

In this work, we explore how regular expressions evolve over
time, focusing on the characteristics of regular expression edits,
the syntactic and semantic difference of the edits, and the feature
changes of edits. Our exploration uses two datasets. First, we
look at GitHub projects that have a regular expression in their
current version and look back through the commit logs to collect
the regular expressions’ edit history. Second, we collect regular
expressions composed by study participants during problem-
solving tasks. Our results show that 1) 95% of the regular
expressions from GitHub are not edited, 2) most edited regular
expressions have a syntactic distance of 4-6 characters from their
predecessors, 3) over 50% of the edits in GitHub tend to expand
the scope of regular expression, and 4) the number of features
used indicates the regular expression language usage increases
over time. This work has implications for supporting regular
expression repair and mutation to ensure test suite quality.

Index Terms—Regular expressions, evolution, empirical studies

I. INTRODUCTION

Regular expressions are employed in data validation, clas-

sification, and extraction (e.g., [1]–[3]). Understanding and

writing regular expressions [4], [5] requires both knowledge

and skills. A single character mistake could cause drastically

different regular expression matching behaviors. However, over

80% of regular expressions written in GitHub projects are not

tested [6], indicating that developers either do not test regular

expressions or use external tools rather than test cases.

Regular expression test generation tools exist for regular

expressions [7]–[11]. These tools enumerate members of

the regular expression language but do not enumerate non-

matching strings. Recent research efforts have explored a

fault-based approach to generating regular expression tests

through mutation testing [12]; faults are injected into regular

expressions and strings are generated that witness the fault,

hence providing examples of non-matching behavior for the

original regular expression. Although mutation testing is a

mature research area, the focus on regular expression mutation

is recent [12]–[16]. However, these efforts have defined the

mutation operators in an ad hoc manner, without consideration

of how regular expressions actually evolve in practice. Hence,

the faults injected might not be representative of actual edits.

In this paper, we explore how regular expressions evolve over

time. Beyond shedding light on the types of edits to consider

in fault-based test generation, the history of source code devel-

opment is valuable in guiding program repairs [17]. Given the

fault-proneness of regular expressions [18], and that developers

under-test their regular expressions [6], understanding how they

evolve can help guide testing and repair efforts. For example,

if regular expressions typically increase in scope over time (i.e.,

the language expands), it is valuable to focus testing efforts

on strings beyond a regular expression’s language. If, however,

regular expressions typically decrease in scope, testing efforts

should focus within the regular expression’s language.

We study regular expression evolution on two datasets

collected separately from two different contexts: Github data

and Video data. The GitHub dataset is comprised of Java regular

expressions collected from GitHub projects by mining their

source code commit history. It represents the use case of regular

expressions in a persistent environment (e.g., within source

code) and provides a coarse-grained view of changes to the

regular expression over time. However, the commit history can

mask the actual evolution of regular expressions as a developer

is composing them since the commit history represents only

what is pushed to the repository. The Video dataset contains

Java regular expressions written by developers during problem-

solving tasks. It was conducted in an ephemeral environment

(e.g., grepping/searching a document/IDE) and reveals as a

finer-granularity view into regular expression evolution. In

combination, we are able to see the types of changes developers

made to regular expressions in both contexts.

This work makes the following contributions:

• Exploration of regular expression evolution from a coarse-

grained lens of GitHub commit logs and a fine-grained

lens of programmers working in an IDE.

• Insights into how regular expressions are edited syntacti-

cally and semantically over time, using several metrics:

Levenshtein distance, semantic distance, and feature

changes.

Our results shows that:

• 95% of literal regular expressions in GitHub (i.e., that do

not contain variables) do not evolve (RQ1),

• Approximately half the edits in both datasets contain six

or fewer character modifications (RQ2),

• Over half the edits in the GitHub dataset expand the scope

of the language whereas the most common edits in the
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Video dataset create a disjoint language (RQ2), and

• Most edits in the GitHub and Video datasets involve

adding and/or removing 4-6 language features (RQ3).

While most regular expressions do not change, understanding

the common changes, and the changes to the language, provides

valuable insights for designing mutation operators to assess the

quality of test suites and for repairing faulty regular expressions,

two promising directions of future work.

II. MOTIVATION

While we show later that a majority of regular expressions

do not evolve (see Section VI), prior work indicates that

regular expression bug reports abound [19] and that regular

expressions are under-tested [6]. In exploring bug reports on

regular expressions, we find evidence that regular expressions

often evolve through refactoring (i.e., the language is the same),

and that edits tend to involve many different mutation operators

at once. This provides evidence that understanding evolution

is important for test generation and repair.

A. Regular Expression Equivalence

A regular expression is a language to describe a set of strings

it can match, and there is usually more than one way to express

it. For example, a digit can be described as a character range

[0-9] and can also be described using shortcut \d. A word

character expressed in \w is equivalent to [A-Za-z_0-9].

Sometimes, bug reports require resolution through semantics-

preserving transformations that improve performance rather

than edits to regular expression behavior.

In one bug report [20], all regular expression captur-

ing groups are changed to non-capturing groups (e.g.,

(\r\n|\r|\n|\f) to (?:\r\n|\r|\n|\f)) to avoid

back tracking so the scope of the regular expression is not

changed by the mutation. In another example [21], regular

expression (\\W|\\d|_) is changed to [ˆA-Za-z] for

better regular expression readability. (To clarify, \\W is

equivalent to the negated character class [ˆA-Za-z_0-9],

and \\d is equivalent to [0-9]; making [0-9] valid in the

desired character class; the underscore is treated similarly).

These provide evidence that not all edits modify the behavior,

and thus not all testing efforts should focus on matching

behavior [6], but rather on performance and understandability.

B. Regular Expression Feature Changes

The state-of-the-art literature on fault-injection [22] and

fixing regular expressions [13] uses simple faults. However,

fixing regular expressions in bug reports often involves more

than one feature. For example [20], the regular expression

[+|-]?\\d*\\.?\\d+([a-z]+|%)?

is changed to

[+|-]?+(?:\\d++(?:\\.\\d++)?+|\\.\\d++)(?:

[a-z]++|%)?+.

In this example, greedy quantifiers (e.g., [+|-]? and \\d+)

are changed to possessive quantifiers (e.g., [+|-]?+ and

\\d++) seven times, and the capturing group is changed to a

non-capturing group.

Understanding the types and frequencies of edits in a regular

expression’s evolution can shed light on how to guide fault-

injection test generation and repair.

III. RESEARCH QUESTIONS

We explore regular expression evolution with respect to

syntactic and semantic measures for the purpose of exploration.

Here, we consider the regular expression string itself, referred

to as r1 or r2, and the languages described by the regular

expressions, L(r1) and L(r2). Evolution is explored in the

context of two datasets: one from the commit histories of

projects on GitHub, and one from screencasts of programmers

solving regular expression tasks. Our research questions are:

RQ1: What are the characteristics of regular expression

evolution?

We explore the number of edits as each regular expression

evolves, the invalid regular expressions on edit chains, and

the phenomenon of regular expression reversions when

the same regular expression appears multiple times.

RQ2: How similar is a regular expression to its predecessor

syntactically and semantically?

We explore syntactic similarity with the Levenshtein dis-

tance [23] between regular expression strings. Regarding

semantic similarity, for a regular expression r2 that evolves

from r1, we empirically measure the overlap between the

languages (i.e., L(r2) and L(r1)).
RQ3: How do the features change in the evolution of a regular

expression?

We explore the features that are most frequently added,

removed, or changed over the whole datasets.

IV. ANALYSIS

A series of edited regular expressions over time is called

an edit chain. The top of the chain is the most recent version

of the regular expression, whereas the bottom of the chain is

the oldest version. The length of the chain is the number of

regular expressions in it, and the number of edits in the chain

is length -1. The bottom of the chain is r1 and the top is rk for

some length k of the chain. For ri its predecessor is ri−1 and

its successor is ri+1. The similarity is described between pairs

of adjacent regular expressions in the edit chain, referred to

generically as an edit. More generally, we compare an edited

regular expression ri that evolved into its successor, ri+1.

For a running example in this section, consider the regular

expressions, r1 and r2:

r1 =caa?a?b
r2 =c{0,2}aa?b
The languages of r1 and r2 are both finite, and enumerated

below, with overlapping strings between L(r1) and L(r2)
bolded for clarity:

L(r1) = {“cab”, “caab”, “caaab”}
L(r2) = {“ab”, “aab”, “cab”, “caab”, “ccab”, “ccaab”}
Next, we describe how the similarities and differences are

measured syntactically and semantically and then describe how

feature changes are represented in the feature vector. In the

end, we provide our implementation details and a discussion

of the limitations.
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Expansion Reduction Disjoint Overlap Equivalent
L(r2)

L(r1)

L(r1)

L(r2)

L(r1) L(r2) L(r1) L(r2) L(r2) = L(r1)

Fig. 1. Types of semantic evolution from r1 to r2

A. Syntactic Similarity

The syntactic similarity is measured by the distance be-

tween the literal representation of the strings. We followed

the measurement of edit distance used in the work of the

automatic generation of regular expressions with genetic

programming [16] and thus chose Levenshtein distance.

Levenshtein distance [23] measures the syntactic distance

between two strings by counting the number of character

insertions, deletions, and substitutions needed to transform

one regular expression into the other. In the example with

r1 and r2, the absolute Levenshtein distance between them

is six. This is computed as one replacement (i.e., a → {),

four additions (i.e., 0,2}) and one removals (i.e., ?) as follows:

ca{0,2}a?a?b

B. Semantic Similarity

Semantic similarity measures the amount of overlap between

L(r1) and L(r2). Adopting the approach from the work of

Chapman and Stolee [5], we measure approximate similarity by

looking at the overlap in matching strings between two regular

expressions. We define the evolution of r1 to r2 by measuring

three sets of strings, A, B, and C, which are represented in

the Venn Diagram in Figure 2. Formally:

A = L(r1) \ L(r2)
B = L(r1) ∩ L(r2), and

C = L(r2) \ L(r1).
There are five types of relationships between L(r1) and L(r2),
which are shown in Figure 11. When L(r1) is a strict subset of

L(r2), then more matching strings are added to the language;

this is called expansion. When L(r1) is a strict superset

of L(r2), this means that the language was reduced during

evolution; we call this reduction. If there is no overlap between

L(r1) and L(r2), then they are disjoint. If L(r1) and L(r2)
are the same, they are called equivalent. The final condition is

a overlap when L(r2) and L(r1) share some strings, but some

are removed and some are added during evolution.

Using the example:

A = {“caaab”},

B = {“cab”, “caab” }, and

C = {“ab”, “aab”, “ccab”, “ccaab”}.

Migrating from r1 to r2 involved an overlap, where all the

strings in A are removed from the matching language, and

all the strings in C are added. In this way, r1 and r2 are

partially overlapped. We measure three metrics pertaining to

the semantic evolution of regular expressions: intersection,

removal, and addition.

1Prior work used mutation for test case generation and defined similar
relationships between regular expressions, omitting disjoint [22].

L(r1) L(r2)

A B C

Fig. 2. Notation for sets A, B and C to compute the semantic evolution from
r1 to r2.

1) Intersection: The Intersection between L(r1) and L(r2)
is computed as:

intersection(r1, r2) =
|B|

|A|+ |B|+ |C|

When the languages are disjoint, |B| = 0, and so the

intersection is likewise 0. When the languages are identical, A

and C are empty, so the intersection is 1. In the running example

with partially intersecting languages,
2

1 + 2 + 4
=

4

7
= 57%.

2) Removal: This metric describes how much of the lan-

guage of r1 is removed in the migration to r2. Generically, the

reduction from r1 to r2 is:

removal(r1, r2) =
|A|

|A|+ |B|

When the r2 is an expansion of r1, the removal is 0 since

|A| = 0. When the languages are disjoint, B is empty, so the

removal is 1. When the languages are equivalent, A is empty

so the removal is 0. In our example of overlap, removal is
1

1 + 2
=

1

3
= 33% meaning that 33% of the language of r1

was removed when evolving it to r2.

We compute the percentage of L(r1) that is retained in

L(r2) by 1− removal(r1, r2). In this example, 67% of L(r1)
is carried forward into L(r2).

3) Addition: This metric describes how much of the lan-

guage L(r2) is new or added after evolving from r1. It is

computed as:

addition(r1, r2) =
|C|

|B|+ |C|

When r2 is disjoint from r1, this means the addition is 1 since

the entire language L(r2) is new with respect to L(r1). When

r2 is a subset of r1, the addition is 0 since nothing is added to

L(r2). In the running example, four strings were added to the

language. In terms of the expansion metric,
4

2 + 4
=

4

6
= 67%,

meaning that 67% of the strings in r2 are new.

We compute the percentage of L(r2) that is carried forward

from L(r1) by computing 1−addition(r1, r2). In this example,

33% of L(r2) comes from L(r1).

C. Language Features

The language features used in a regular expression may

evolve as the regular expression evolves. In the example
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r2 = c{0,2}aa?b

r1 = caa?a?b

4 1 1

5 0 2

LIT DBB QST

Fig. 3. Example r1 and r2 parsed into feature vectors. LIT = Literal, DBB =
Double-Bounded, QST = Questionable

from r1 to r2, one language feature was added, the double-

bounded repetition (i.e., {0,2}), or DBB for short. Adopting

the abbreviations used in prior work [5], Figure 3 shows

how the features change using feature vectors. We use the

following metrics for feature evolution: Fremove is the number

of language features appearing in r1 but not r2; Fadd is the

number of features in r2 but not r1.

In Figure 3, the frequencies for LIT, DBB, and QST in r1
are 4, 1, and 1, respectively. Taking this example, the feature

vector of LIT, DBB, and QST is -1, 1, -1 meaning that from

r1 to r2 one LIT is removed, one QST is removed, and one

DBB is added. Therefore Fadd = 1 and Fremove = 2.

To measure the most frequently added or moved features,

we keep track of each feature in the two metrics above. For

DBB, it falls into Fadd with the value of one. For LIT and

QST, they both fall into Fremove with the value of one for

each of them.

D. Implementation

For the regular expressions, we use an ANTLR-based

PCRE (Perl Compatible Regular Expressions) parser1 to extract

features used in a regular expression to create a feature vector.

We use the class Levenshtein Distance provided in the Java

library of Apache Commons Text [24].

For semantic distance, we approximate the language for L(r)
by generating strings for r using Rex [7]. The Rex tool analyzes

regular expressions using symbolic analysis. When configured

as a string generation tool, it aims to generate strings inside

L(r). Using Rex, for each regular expression r, we tried to

generate strings which could successfully match r. We tried

k = 100, k = 200, and k = 500; because the difference in the

distribution of regular expression edit types are negligible, we

choose to present the results with k = 500.

Considering L(r) could be smaller than k, Rex tried up

to five times for each r with different seeds so that the

accumulated number of generated strings can get to k. But if

|L(r)| < k, the total generated strings are equal to |L(r)|.
For the semantic comparison between r1 and r2, the edit is

directional, from r1 to r2. To give the total set of all strings in

both languages, we compute the union set L = L(r1)
⋃
L(r2).

This removed duplicates so only unique strings are considered

for the analysis (i.e., if the string s ∈ L(r1) and s ∈ L(r2)
for the same string s, we want to count this once). Then, we

matched each string in L with r1 and r2 separately, to form

sets A, B, and C, as described previously.

1https://github.com/bkiers/pcre-parser

E. Limitations

For the semantic analysis, we note that a regular expression r

could be invalid in Java regular expression syntax, or Rex may

not be able to generate strings for r due to feature limitations.

If either r1 or r2 is invalid in Java or contains features beyond

the scope of Rex capabilities, we skipped semantic analysis. For

example, an edit chain of length five r1, r2, r3, r4, r5 should

have four semantic comparisons. If r3 is invalid in Java syntax,

this edit chain reduces to two comparisons, between r1 and

r2, and between r4 and r5.

For infinite languages, and languages larger than the upper

bound on strings generated (i.e., k = 500), the approach

described in Section IV-B describes an optimistic approxi-

mation of the actual similarity between regular expressions.

This is a relatively common scenario due to the common

presence of the KLEENE star and ADD operator in a majority

of the regular expressions (see Table IV). The only sound

classification is overlap; all other classifications might be the

result from ignoring one or two words in one (or both) of

the languages. We depend on Rex for the string generation to

determine similarity and thus inherit any of its biases.

V. ARTIFACTS

We address research questions in this paper using two

datasets. One comes from GitHub commit logs, providing a

high-level view of regular expression evolution over time. The

other comes from screencasts of developers solving regular

expression tasks in an IDE, providing a low-level view of

evolution during problem-solving tasks.

A. GitHub Dataset

The history of regular expressions in GitHub projects is

collected through source code commits. Since only literal

regular expressions can be found statically, we are limited

to the explicitly written regular expressions.

1) Collecting Regular Expressions in Latest Version: Our

data collection starts within the 1,114 Java projects used in

prior work on testing regular expression [6]. We first searched

for method invocations of Pattern.compile(String regex)

in latest source code version. If the argument is a literal

string (as opposed to a variable), we follow the commit

history of the literal string to create an edit chain for the

regular expression. We filtered out the invocations in which the

argument of Pattern.compile contains variables and extracted

the files and the line numbers where literal regular expressions

appear. For other methods, String.matches(String regex)

needs to check if the caller is a String instance,

and Pattern.matches(String regex, CharSequence input)

contains two arguments that can vary independently; for this

first data-driven exploration of regular expression evolution,

we focus on the Pattern.compile() method.

There are 9,952 static invocations to Pattern.compile() in

the 1,114 projects; 387 (34.74%) projects contain no literal

regular expressions in their latest version and were excluded,

resulting in 4,156 literal regular expressions in 727 GitHub

projects; these are the tops of the edit chains.

505



2) Building the Edit Chains: To retrieve the commit history

of each literal regular expression, we used the Git command

git log -L <start>,<end>:<file>. We retained information

regarding the regular expression edit, commit number, author,

and date of each regular expression version. We dropped 194

(4.67%) chains for the following reasons: 1) 123 were dropped

because more than one regular expressions are changed in a

single commit on the chain; 2) 30 were dropped because non-

literal regular expressions exist in their history of commit

changes; 3) 24 were dropped because at least one of the

invocations to Pattern.compile() are multi-line statements

and we failed to parse them; 4) 17 were dropped because their

git log -L commands return git activities (e.g., merging files)

rather than code edits.

If two adjacent regular expressions are identical to each

other in syntax (e.g., something else on the source code line

changed, such as a variable name), then this regular expression

does not evolve; we squashed these into a single node on the

edit chain. There are 144 pairs of such regular expressions. As

a result, in the GitHub dataset for study, there are 3,962 edit

chains containing 4,224 regular expressions from 708 GitHub

projects.

B. Video Dataset

We ran an exploratory lab study in which participants

completed regular expression tasks in Java using the Eclipse

IDE. During problem solving, we captured videos of their

computer screens. Participants were free to use online resources

to help them complete the tasks.

1) Tasks: Participants attempted up to 20 tasks each, with

one hour allotted for the study. The order of tasks was

randomized per participant to control for learning effects. In

each task, the goal was to compose a regular expression that

caused an associated JUnit test suite to pass. For example, one

task asked participants to compose a regular expression that

will verify that an entire string is composed of one valid email.

Extra characters like whitespace before or after, or anything that

would invalidate the email are not allowed. For this task, eight

test cases are provided to demonstrate the desired behavior. One

test case provides the test input "name@domain.com" with the

expected output true, as in the e-mail address is valid. Another

test case has the test input "1.2.3.4@crazy.domain.axes" and

output true. For invalid examples, "www.website.com" has the

expected output false. A repo with all the task data is made

publicly available1.

2) Participants: There were 29 participants who produced

usable data for this analysis (six videos had issues with record-

ing). The participants consist of 25 undergraduate students

and four graduate students with on average 4.16 years of

programming experience and 3.26 years of Java experience.

The survey results found that a majority of participants

(76%) considered themselves as having intermediate Java

programming knowledge; 20 participants (69%) have little

to no experience with regular expressions.

1https://github.com/wangpeipei90/VideoRegexTasks/.

3) Data Extraction: The videos were manually transcribed

to logs reflecting the evolution of the regular expression strings

during composition on each problem. In the transcription

process, we created a log for each task the participant attempted

in each video. Each video was transcribed by one of the authors

to ensure consistency within a log. An edit chain consists of

all the regular expressions written (or copy/pasted) and then

submitted by participants for execution (i.e., at least one test

is run). In this way, a node in an edit chain is created at every

test suite execution.

4) Data Description: In total, there are 92 edit chains

containing 751 regular expressions from 25 tasks and 29 par-

ticipants. Twelve pairs of identical adjacent regular expressions

are squashed, resulting in 92 edit chains containing 739 regular

expressions.

VI. RQ1: REGULAR EXPRESSION EVOLUTION

CHARACTERISTICS

We describe the characteristics of regular expression evolu-

tion through analyzing the edit chains in the datasets.

A. Edit Frequency of Regular Expressions

In the GitHub dataset, the 3,962 edit chains contain 4,224

regular expressions. Among the edit chains, 3,775 (95.28%)

have a length of one, indicating those regular expressions are

not edited at all. Regarding the remaining 187 edit chains of

449 regular expressions, 137 contain one edit, 35 contain two

edits, five contain three edits, and ten contain four edits; in

total, this created 262 edits.

In Video dataset, of the 92 edit chains containing 739

regular expressions, there are 16 (17.39%) chains of length one.

Regarding the remaining 76 regular expression edit chains, 11

contain one edit, eight contain two edits, seven contain three

edits, four contain four edits, 12 contain five edits, and the

others contain edits from six to 48. The regular expression

created by participants needs on average seven changes before

task completion or abandonment; this creates 647 edits.

Summary: During problem solving, developers tend to

modify their regular expressions quite frequently in order

to successively complete a task. However, once a regular

expression is committed to a GitHub repository, edits are rare;

95% of the literal regular expressions were not edited.

B. Runtime Errors

The grammar errors in a normal program source code can

be highlighted in the integrated development environment

(IDE) and checked during program compilation. However, the

grammar errors of regular expressions in source code can only

be found and thrown during program runtime.

Of the 4,224 regular expressions in the GitHub Dataset, there

are nine (0.21%) that produce runtime errors on nine (0.23%)

edit chains. Of the 739 regular expressions in the Video Dataset,

there are 65 (8.80%) regular expressions that produce runtime

errors in 26 (28.26%) edit chains. These impact 85 of the edits.

Summary: Invalid regular expressions are rarely observed

in GitHub. For the video dataset, invalid regular expressions

typically appear in the early stages of evolution.
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TABLE I
THE DISTRIBUTION OF LEVENSHTEIN DISTANCES IN BOTH GITHUB AND

VIDEO EDITS (WHERE DISTANCE > 0).

Dataset Mean Min 10% 25% 50% 75% 90% Max

GitHub 9.32 1 1.00 2.00 5.50 12.75 23.00 52
Video 6.87 1 1.00 2.00 4.00 8.50 15.40 88

Video

GitHub

Levenshtein distances

0 5 10 15 20 25 30 35 40

Fig. 4. The distribution of Levenshtein distances for 262 GitHub edits (with
distance > 0) and 647 Video edits (with distance > 0).

C. Regular Expression Reversions

Regular expression reversion describes the re-occurrence of

some regular expressions after they have been modified in an

earlier stage. Suppose three regular expressions ri, rj , and rk
(i < j < k) on the same edit chain, then the case when rk is

same as ri but different from rj is called a regular expression

reversion.

In the GitHub dataset, there are 12 regular expression

reversions on 12 edit chains; 11 reversions happened in two

edits and the other one in three edits.

There are 85 cases of regular expression reversions in Video

dataset. Those reversions happened on 25 edit chains; 36

(42.35%) reversions were made in two edits and 11 reversions

in three edits. The number of edits in the other 38 reversions

varies from four to 28.

Summary: Regular expression reversions imply that develop-

ers may repeat the same regular expression even if they have

previously modified it. This is especially true for inexperienced

developers since reversions are more common in the Video

dataset; the high frequency possibly reflects developers’ undo

behavior. This behavior is not seen as commonly in the GitHub

dataset.

VII. RQ2: SYNTACTIC AND SEMANTIC EVOLUTION

We explore RQ2 regarding syntactic and semantic evolution.

A. Syntactic Similarity

We report on Levenshtein distance for the GitHub and Video

datasets considering individual edits. Starting with an example,

one regular expression extracted from GitHub was committed

by user ginere in one version1 and was changed by the same

user in a newer version2. The original and modified regular

expressions are, respectively,

\\|DATE\\[([a-zA-Z0-9_]*)\\]\\|

\\|DATE\\[([a-zA-Z0-9:\\- /]*)\\]\\|

1https://github.com/ginere/ginere-site-generator/commit/7c819359
2https://github.com/ginere/ginere-site-generator/commit/248d3a25

TABLE II
EDIT TYPES IN GITHUB AND VIDEO DATASET WHEN k = 500

Dataset Disjoint Overlap Equivalent Reduction Expansion Total

GitHub
count 44 17 22 20 106 209
(%) 21.05 8.13 10.53 9.57 50.72 100.00

Video
count 125 32 36 43 56 292
(%) 42.81 10.96 12.33 14.73 19.18 100.00

The only syntactic edit is the change from _ to :\\- /,

resulting in a Levenshtein distance of five (“\\” is considered

as one character because backslashes are escaped in Java).

In the study of GitHub dataset on Levenshtein distance, we

calculated 262 regular expression edits on 187 edit chains.

In Video dataset, we calculated 647 regular expression edits

among 76 edit chains.

Figure 4 shows the distribution of Levenshtein distances

among the edits in both dataset; Table I details the distributions

of the Levenshtein distances. On average, there is a distance of

9.32 for a GitHub edit with a median of 5.50, and a distance

of 6.88 for a Video edit with the median of 4.00.

Summary: The average and median Levenshtein distances in

GitHub are larger than in the Video dataset. This reflects our

intuition that developers try many small edits while composing

and debugging a regular expression. Accordingly, the regular

expressions which are committed to version control software

reflect larger edits from their predecessors.

From the perspective of regular expression changes, both of

the datasets have over 50% regular expression edits in which at

most six characters change. Those modifications are the ones

could be made automatic through regular expression mutation.

However, for the other half of the regular expressions, the

changes are much lager. This information suggests that when

generating regular expression mutants, we should also consider

ways larger changes and/or changes in multiple locations.

B. Semantic Similarity

Within each edit chain, we look at each edit and classify

it according to the semantic evolution types in Figure 1. In

order to compute the similarity between regular expressions,

we adopt an approach from prior work [5] and use Rex [7].

We generate up to k = 500 strings for each regular expression,

as described in Section IV-D.

1) Rex-generated Strings: With k = 500, Rex tries five

times with different seeds to generate 500 matching strings

for every valid regular expression. The number of matching

strings for regular expression ri can be different from that for

ri+1 because Rex could not guarantee to generate exactly 500.

For the semantic distance between ri and ri+1, it requires that

both are valid regular expressions and Rex are able to generate

matching strings for both of them. Due to the invalid regular

expressions next to the valid ones and chains of only one valid

regular expressions, the total number of regular expressions

involved in the semantic distance is fewer than the ones for

which Rex can generate strings.

For the GitHub dataset, Rex generated matching strings for

441 out of the 446 valid regular expressions; 272 have 500
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TABLE III
THE DISTRIBUTION OF INTERSECTION, ADDITION, REMOVAL

PERCENTAGES OVER ALL TYPES OF REGULAR EXPRESSION EDITS IN

GITHUB AND VIDEO DATASET WHEN K IS 500.

Dataset Mean Min&10% 25% 50% 75% 90%&Max

Intersection 56.62 0.00 29.30 70.37 83.05 100.00
GitHub Addition 38.98 0.00 5.06 26.39 57.58 100.00

Removal 27.71 0.00 0.00 0.00 52.56 100.00

Intersection 35.78 0.00 0.00 3.87 73.09 100.00
Video Addition 56.42 0.00 0.00 79.75 100.00 100.00

Removal 54.73 0.00 0.00 53.49 100.00 100.00
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Fig. 5. The distribution of Add, Remove, and Overlap percentages over
disjoint, equal, overlap, subset and superset regular expression edits in GitHub
and Video dataset when k is 500.

rex-generated matching strings while the other 169 have fewer

than 500 matching strings. On average there are 432 matching

strings generated for each regular expression. In total, 209 edits

on 146 edit chains are studied for the GitHub dataset.

In the Video dataset, Rex generated matching strings for 393

out of 674 valid regular expressions; 102 regular expressions

have 500 strings and the other 291 ones have fewer than 500

strings. On average there are 270 Rex-generated matching

strings per regular expression. In total, 292 edits on 47 edit

chains are studied for the Video dataset.

2) Results: Table II shows the number of different edit

types in the GitHub and Video datasets. The most common

edit is expansion for GitHub (50.72%); disjoint is the most

common edit for the Video dataset (42.81%). Table III shows

the distribution of intersection, addition, and removal metrics

for every regular expression edit in both datasets. The average

intersection value for an edit in the GitHub dataset is 56.62%,

indicating that more than half of the language from an

edited regular expression is sourced from its predecessor. This

makes sense as a majority of the edits fall in the expansion

classification (Table II). In the Video dataset, only 35.78%

of the language of a regular expression is sourced from its

predecessor, likely lower because of the high frequency of

disjoint edits. In the GitHub dataset, the relatively small

addition and removal values indicate that the semantic change

is relatively small per edit, whereas with the addition and

removal values in the Video dataset are larger, on average,

indicating larger semantic changes per edit.

The GitHub dataset edits represent the situations where the

regular expression being modified are close to the targeted

scope of strings because of their small number of edits and

a high percentage of edit intersection. This indicates that the

semantic edits are relatively small.

The differences can also be observed in Figure 5 which

visualizes the distributions of metrics per semantic edit type.

Because disjoint and equivalent has either no intersection or

are completely the same, these two edit types are shown

as horizontal lines at 0% and 100%. In all edit types, the

intersection value of GitHub dataset is higher than that of

Video dataset while the addition and removal values of GitHub

dataset are always lower than of Video dataset. In the expansion

edit type for GitHub, the average addition is 29.02%; for the

video analysis, the addition is 41.52% on average. Reduction

edits in GitHub remove an average of approximately one-

third (35.55%) of the language, whereas the Video reductions

remove an average of 47.08%. Average intersection numbers

for overlap, reduction, and expansion in the GitHub edits are

45.08%, 64.45%, and 70.98% whereas the average intersection

numbers for these three edit types in the Video edits are 36.67%,

52.92%, and 58.48%.

Refactoring Analysis: We did a further study on pairs of

regular expressions classified as equivalent. In the GitHub

dataset, 19 out of the 22 pairs are correctly classified. For

the three misclassified cases, one changes the repetition

time from [a-z0-9_-]{1,64} to [a-z0-9_-]{1,120}.

This misclassification is because the length of strings generated

by Rex appears to be less than 13. The other two cases change

special characters in the character class, and Rex does not use

those special characters in the string generation.

Among the 19 truly equivalent pairs, eight pairs are

related to unnecessary character escaping (e.g., from

([\\+\\-])+(.*) to ([+\\-])+(.*) and three pairs

are related to changes in capturing group representation

(e.g., from .* \\{.*\\} to (.*) (\\{.*\\}). One

removes capital characters from [aA][sS] and expresses

the case sensitiveness with flag (?i)AS, and two adds

and removes capital characters in (?i)[0-9a-fA-F]

and (?i)[0-9a-f] while regular flag ‘i’ is specified

for case-insensitive matching. One changes character

repetition boundary [0-9]{1,} to greedy operator [0-9]+,

hence improving improves the understandability according

to a regular expression comprehension study [4]. One

changes the literal parentheses in character class from

[(][)] to escaped characters \\(\\). One changes

the ordering on options surrounding an OR operator,
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from ([wdhms]|ms) to (ms|[wdhms]). For full

matches (as is the case with Pattern.matches), these

are identical. The final two pairs change whitespace

around a .*, from (?im)ˆdry-run:\\s*(.*)\\s*
to (?im)ˆdry-run:(.*) and from

(?im)ˆdry-run:(.*) to (?im)ˆdry-run:(.*)\n*.

Effectively, these are all equivalent.

In the Video dataset, 35 of the 36 pairs are correctly classified.

The only misclassified case changes the whitespace characters

from 00Z*([a-zA-Z\\s]*) to 00Z*([a-zA-Z ]*). It

is correctly classified as reduction when k = 1000.

Among the 35 truly equivalent pairs, 12 pairs are

related to changes in capturing group representation,

nine pairs are related to unnecessary character escaping,

three are about adding or deleting anchors (e.g., from

ˆ[.]+@[a-zA-Z0-9-]+\\.[a-zA-Z0-9-.]+$

to [.]+@[a-zA-Z0-9-]+\\.[a-zA-Z0-9-.]+$1,

four about changing OR operator alternatives which

does not impact matching behaviors, such as removing

one option from (.*)|(6.35.) to (.*). One

removes character class of single element from

[A-Za-z0-9][\s] to [A-Za-z0-9]\s. Two pairs

manipulate duplicated characters in the character

class between [(1|3|5|7|9)+(2|4|6|8|0)]

and [(1||3||5||7||9)+(2||4||6||8||0)]

possibly due to misconceptions of the differences

between [] and (). Another edit changes from

.*[02468][13579].* to .*([02468][13579])+.*.

Although + is added, additional digits are accepted by

.* at the beginning of these two regular expressions.

One changes from [a-zA-Z-’](.*)total[0-9]

to [a-zA-Z-’]+(.*)total[0-9]. Although + is

added, additional characters are accepted by (.*)

in the middle of these two regular expressions. In

the modification from ˆ[a-zA-Z0-9 \\t]*$ to

ˆ[a-zA-Z0-9 \\d \\t]*$, the regular language

does not change because \\d is equivalent to 0-9 which

exists already in the character class. The final pair changes

from (((1||3||5||7||9)+(2||4||6||8||0))*
|((2||4||6||8||0)+(1||3||5||7||9))*)

to (((1||3||5||7||9)(2||4||6||8||0))+

|((2||4||6||8||0)(1||3||5||7||9))+). This

is because a||b contains tree alteratives: a, b, and empty

strings and (1||3||5||7||9) matches not only odd digits

but also empty strings. The changes of repetitions in these two

regular expressions are thus counteracted by the empty strings.

Summary: Compared to the GitHub edits, the edits in the

Video dataset tend to include larger semantic changes. GitHub

edits represent small adjustments of the regular expression

close to targeted scope.

1Since Pattern.matches(String regex, CharSequence input),
String.matches(String regex), and Matcher.matches() by
default match the entire input string to the regular expression and anchors do
not affect the matching results

TABLE IV
STATISTICS OF THE LANGUAGE FEATURES IN GITHUB AND VIDEO DATASET

RANKED BY THE NUMBER OF REGULAR EXPRESSIONS IN WHICH FEATURES

PRESENT (FREQ), FEATURES ARE ADDED (ADD), AND FEATURES ARE

REMOVED (REMOVE).

rank
GitHub Video

Freq Add nR Remove nR Freq Add nR Remove nR

1 LIT LIT 123 LIT 62 LIT LIT 191 LIT 144

2 CG KLE 53 ADD 27 CG CG 95 CG 63

3 ADD QST 42 KLE 24 ANY KLE 76 KLE 53

4 KLE ANY 36 QST 23 KLE ANY 55 ANY 40

5 CCC CG 34 CCC 22 ADD ADD 54 ADD 37

6 ANY ADD 34 CG 21 CCC CCC 33 CCC 24

7 RNG CCC 33 ANY 17 WSP WSP 27 WSP 23

8 STR RNG 24 DEC 12 RNG OR 24 OR 15

9 END OR 20 RNG 11 OR STR 23 STR 15

10 DEC NCG 13 END 8 WRD DEC 21 WRD 12

11 QST NWSP 9 STR 8 DEC LZY 16 RNG 11

12 NCCC NCCC 9 NWSP 7 END QST 15 DEC 10

13 WSP WSP 8 OR 6 STR END 13 END 10

14 OR WRD 8 NCG 5 LZY RNG 12 NCCC 10

15 WRD DEC 7 LWB 5 QST WRD 12 LZY 8

16 LZY END 6 DBB 4 WNW WNW 11 WNW 8

17 SNG STR 5 LZY 3 NCCC NCCC 10 QST 7

18 NCG LZY 4 NCCC 2 SNG SNG 10 SNG 3

19 NWSP DBB 3 WSP 2 LKB LKB 4 LKB 3

20 DBB OPT 3 WRD 2 BKR NWRD 3 NCG 3

21 OPT NDEC 2 SNG 2 NCG NDEC 2 NLKA 2

22 LWB LKA 2 LKA 1 LWB NCG 2 LKA 2

23 WNW LWB 1 OPT 0 NLKA BKR 2 LWB 1

24 LKA SNG 1 NDEC 0 NDEC LWB 2 NWNW 1

25 NWRD NWRD 0 NWRD 0 LKA NLKA 2 NDEC 0

ADD: one-or-more repetition (a+) QST: zero-or-one repetition (a?)

KLE: zero-or-more repetition (a*) DBB: double bounded repetition (a{2,4})

SNG: exactly n repetition (a{3}) OR: logical or (a|b) LIT: literal character (a)

VIII. RQ3: REGULAR EXPRESSION FEATURE CHANGES

In this section, we present our results and analysis of regular

expression language feature changes in the edit chains. This

can inform mutation testing or program repair.

The feature vector we use contains the 35 most frequently

used features in Java regular expressions. All feature explana-

tions except LIT (literal character) are defined in the work of

Chapman and Stolee [5].

For the GitHub dataset, we started with 262 edits; 3 were

removed due to Java runtime errors (Section VI-B) and three

were removed due to PCRE parsing errors, leaving us with

256 edits. For the Video dataset, we started with 647 edits; 85

were removed due to runtime errors and four were removed

due to PCRE parse errors, resulting in 558 edits for analysis.

1) Feature Vector Edits: We first calculated the number of

regular expressions in which each feature appears. For the 4,054

regular expressions in GitHub and 660 regular expressions in

Video Feature that can be parsed by PCRE. Table IV shows

the results of frequency analysis for the top 25 features in the

Freq column for the GitHub and Video Datasets.

For 237 of the GitHub edits and 536 of the Video edits,

the feature vector (e.g., Figure 3) changed. Fadd and Fremove

are listed, alongside the number of edits impacted (nR). For

example, 123 edits in GitHub added a literal (LIT), and 53

added a KLEENE star (KLE). The ADD feature is the third

most commonly seen feature in the GitHub dataset. It is

added into 34 regular expressions and ranked as the sixth

most frequently added feature while it is removed from 27

regular expressions and ranked as the second most frequently
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TABLE V
DISTRIBUTION OF REGULAR EXPRESSION FEATURE CHANGES AMONG 256

EDITS IN GITHUB DATASET AND 558 EDITS IN VIDEO DATASET.

Dataset Mean Min 10% 25% 50% 75% 90% Max

Fadd 3.71 0 0 1 2 5 9 37
GitHub Fremove 2.52 0 0 0 0 2 7 37

Fadd+Fremove 6.23 0 1 2 4 8 15 39

Fadd 2.60 0 0 0 1 3 6 73
Video Fremove 1.98 0 0 0 1 2 5 66

Fadd+Fremove 4.58 0 1 1 2 5 11 75

removed features. Assuming that the predecessor in a regular

expression edit has a fault of some sort, these details can help

inform the types of changes to make to a regex feature vector

during fault injection for mutation testing.

Overall for every feature in both datasets, there are more

regular expressions which added it than the ones which removed

it. From Table V we can find that feature frequency is different

between GitHub and Video. For example, on the average edit,

3.71 features are added to a regular expression and 2.52 are

removed. For the video dataset, these values are smaller, with

2.6o features added and 1.98 removed. These details can help

inform the frequencies of changes to make to a feature vector

during fault injection for mutation testing or repair.

2) Feature Vector Non-Edits: The feature vector used in

this study does not reflect the positions of features, nor the

scope of the changes. For example, the modification from

[\\D]{2} to [\\D]{5} does not change the number of

feature SNG but it changes the repetition time of SNG from

‘2’ to ‘5’. Similarly, the change from (ˆ\\r\\f\\n) to

ˆ(\\r\\f\\n) changes the content of capturing group to

exclude‘ˆ’, but the feature vector remains the same.

There were 19 edits in the GitHub dataset and 22 in

the Video dataset for which the vectors did not change. On

further inspection, the most common modification is related to

backslash for character escaping (e.g., from \t\n to \\t\n),

impacting 10 edits in the GitHub dataset and 13 edits in the

Video dataset. Other common modifications change characters

to other characters (e.g., from \\{([\\w\\.]*)\\} to

\\(([\\w\\.]*)\\)), switch the order of characters (e.g.,

from \f\\s to \\s\f), change repetition times (e.g., from

[a-z0-9_-]{1,64} to [a-z0-9_-]{1,120}), change

the content and position of capturing group (e.g., from

(ˆ\\r\\f\\n) to ˆ(\\r\\f\\n)), change characters in

the character class (i.e., from ˆ[a-zA-Z0-9 \\\\]*$ to

ˆ[a-zA-Z0-9 \\t]*$ or change alternation option (e.g.,

from ˆ(\\r|\\n) to ˆ(\\r|\\f)).

Summary: The regular expression edits usually involve

changing multiple features; adding features is more common

than removing. The frequency of various features being added

and being removed can be used to construct new regular

expression mutation operator and guide mutation generation

process. However, there are also edits that do not impact the

feature vectors; escaping characters is the most common edits

do not result in changes in the feature vector.

IX. DISCUSSION

In this work, we look at the evolution of regular expressions

from two perspectives, syntactic and semantic, and in two

contexts, using GitHub projects with commit histories and

developer during problem-solving tasks.

A. Implications

Most literal regular expressions in GitHub do not evolve

(Section VI), and yet, bug reports related to regular expressions

abound [19]. This may indicate that our results are only limited

to literal regular expressions. As we only studied literal regular

expressions which still exist in the latest code versions, it does

not cover the ones which are removed in previous commits.

Yet, regular expressions are under-tested [6], and most string-

generation efforts focus on generating test inputs within the

language of the regular expression (e.g., [7]). For those regular

expressions that do evolve, 50% of the edits in GitHub are

expansion edits (Section VII), indicating that often the original

regular expression language is too restrictive. In generating

test inputs, there is a need for test strings that lie outside

the language of the original regular expression. One approach

to this is fault injection via mutation [12]. However, to do

this effectively, these faults need to be reflective of edits

that developers make to regular expressions. The analysis of

semantic changes in regular expression evolution suggests that

in mutation testing we should focus on meaningful mutants

which have a high semantic overlap with the original one. We

should also pay more attention to regular expressions with

multiple faults since a typical regular expression edit involves

a few feature changes.

For those regular expressions that do evolve, 50% of the

edits have a syntactic distance of six or fewer characters; these

are most amenable to mutation testing (Section VII). Edits also

impact multiple language features (Table V).

For the Video dataset, the edits tend to be smaller in terms

of character modifications (Table I), but larger in terms of

semantic distancing (Table III shows the intersection for Video

edits is smaller than for GitHub edits). Furthermore, the edits

to the feature vector tend to be smaller for the Video dataset

(Table V). The Video dataset edit chains are also longer than

the GitHub edit chains (Section V). Even though the Video

dataset participants were largely novices, this indicates that

developers likely go through many smaller iterations of edits

on the regular expressions before finding one to commit.

B. Threats to Validity

Internal: We measure similarity using a string-generation

approach that provides an approximate measure of similarity.

We also observed in Section VII-B that while Rex is a well-

used and well-cited tool, sometimes it did not generate strings

long enough and strings for uncommon characters. Such tool

limitations have an impact on the accuracy of our results.

The regular expressions from the video analysis were

collected manually. Each video was transcribed by two graduate

students and merged to address any inconsistencies.
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We collect regular expressions from GitHub using the current

version of a project at the top of the chain. Regular expressions

that are removed previously in the edit history will not be

included in our dataset.

External: The regular expressions collected in this project

reflect a relatively small sample, in one language (Java), and

may not generalize. Further, the Video dataset was collected in

a lab environment and may not reflect how developers actually

compose regular expressions. While further study is needed,

we do note that the common language features are consistent

with prior work that explored regular expressions in another

language [5].

The literal regular expressions we collected are restricted

to Pattern.compile(...). Regular expressions with explicit

flags to that method are excluded as well. Other Java methods

which also accept literal regular expressions are not included

in GitHub dataset.

C. Opportunities For Future Work

Mutation Testing: One big motivation of studying regular

expression evolution is to apply empirical knowledge to

mutation testing of regular expressions. The difference between

GitHub and Video dataset suggest we try different mutation

strategies according to the stage of software development. We

can define mutation operators depending on the changes among

regular expression features and inside each regular expression

feature. The priority of various mutants can be ranked according

to their syntactic and semantic distance.

Regular Expression Comprehension: Most of the equivalent

edits (Section VII-B2) are not reflected in prior work, with one

exception (i.e., [0-9]{1,} to [0-9]+ is the same as a L1 to

L3 transformation [25]). This provides future opportunities to

assess comprehension of edits that reflect source code history.

String-generation Tool: The intersection of regular expres-

sion edits is less than 60%, indicating the string-generation tool

should generate a certain percentage of strings not matching

to the regular expression but matching to its mutants.

X. RELATED WORK

Theoretical regular expression evolution has been studied in

research. The regular expression can be created from a large

number of labeled strings [14]–[16] or generated according to

an existing one [26]–[28]. However, in these studies, mutation

operators are defined according to genetic programming or

grammatical evolution. The actual mutations performed by

developers are unknown and not considered. Thus, this paper

explores empirical regular expression changes and establishes

the basis for the later study on practical regular expression

mutation operators.

Another well-studied topic is source code evolution. Software

evolves through a number of source code changes and the

evolution has been analyzed at levels of granularity different

from added or deleted lines [29], [30]. Early studies are focused

on identifying semantic and syntactic code changes [31]–

[33]. Recent studies are focused on predicting defects or

vulnerabilities through code changes. For example, a file with

many changes is more likely to be vulnerable than an unchanged

file. The concept of the code churn metric was introduced as a

means to measure the impact of code changes [34]. Together

with other information (e.g., complexity, developer activity

metrics), code churn are used to predict security vulnerability,

software failures and defects [35]–[40]. Some other study

in source code evolution includes code clones [41], [42]

and crosscutting concerns [43]–[46]. For regular expressions,

we borrow the concept of code churn and measure regular

expression evolution by calculating the Levenshtein distance.

We do not, however, have a measure of regular expression

faultiness to tie together edit distance with fault-proneness;

exploring that is left for future work.

Also related to syntactic and semantic evolution is the regular

expression similarity. Rot, et al. proved regular expression

language equivalence and the inclusion of DFAs that represent

a subset of regular expression features [47], though no

implementation is available. Dulucq, et al., defined tree edit

distances [48] that can be applied to regular expression parse

trees, which complements recent work proving that parse tree

subsumption implies language subsumption [49]. Wang, et

al. worked to cluster patterns by syntactic similarity [50],

and others have worked to enumerate strings of regular

expressions [7], [51]. These efforts toward computing and

understanding regular expression similarity are valuable but

lack available implementations.

Other regular expression research includes algorithms and

tools to generate test cases with regular expressions [22], [52],

[53], generating regular expressions for DNA sequences [54]

and matching patterns. Enhancing regular expression pat-

tern matching and processing speed is a common focus as

well [55]–[58]. Regular expression features, refactoring, and

comprehension have been the subject of recent work [5], [25],

but exploring how regular expressions evolve is new to the

literature.

XI. CONCLUSIONS

In this work, we explore how regular expressions evolve

through two lenses, GitHub commits and tested regular

expressions during problem-solving tasks (called the Video

dataset). We find that the GitHub regular expression edits are

syntactically larger but semantically smaller than the Video

dataset. The edit chains in the Video dataset are longer than the

GitHub edit chains, indicating that developers may go through

multiple iterations prior to committing a regular expression

to a repository. The most common change to the scope of

the regular expression in GitHub is to expand the matching

language, which motivates the use of mutation operators to

generate strings outside the original language for testing. Our

results provide insights on the types and frequencies of edits

that occur in regular expressions and can be used to guide

mutation operators that reflect developer practices.
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